Acta Cryst. (1998). C54, 711-712

Tris(*tert*-butylcyclopentadienyl)praseodymium-µ-bromo-tris(tetrahydrofuran)lithium†

Yunjie Luo,^{*a*} Yingming Yao,^{*a*} Qi Shen,^{*a*} Jie Sun^{*b*} and Feng Xue^{*c*}

^aDepartment of Chemistry, Suzhou University, Suzhou 215006, People's Republic of China, ^bShanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China, and ^cDepartment of Chemistry, The Chinese University of Hong Kong, Hong Kong, People's Republic of China. E-mail: qshen@nsad. suda.edu.cn

(Received 28 January 1997; accepted 3 November 1997)

Abstract

The title complex [{Li(C₄H₈O)₃}Br{Pr(C₉H₁₃)₃}] has a distorted pseudo-tetrahedral geometry around the tencoordinate Pr atom. The ('BuCp)₃Pr unit and Li(thf)⁺₃ cation (where thf is tetrahydrofuran) are connected by a μ -Br atom. The Pr—Br and Li—Br distances are 2.995 (1) and 2.495 (15) Å, respectively, and the Pr— Br—Li angle is 137.3 (3)°.

Comment

Anionic complexes containing a $(C_5H_5)_3Ln$ unit, such as $[(C_5H_5)_3PrC_4H_9]^-$ (Jahn *et al.*, 1984), $[(C_5H_5)_3Nd-C_6H_5]^-$ (Gao *et al.*, 1992) and $[(C_5H_5)_3Ln(C_5H_5)]^-$ (Ln = La, Ce, Pr, Nd) (Jacob *et al.*, 1989), have been reported. Recently, we described the syntheses and molecular structures of $[(BuCp)_3Nd(\mu-Br)Li(thf)_3]$ (Song *et al.*, 1992) and $[(BuCp)_3Ln(\mu-C1)Li(thf)_3]$, with Ln = Nd (Guan *et al.*, 1994) and La (Ren *et al.*, 1994). We now report the structure of the analogous complex $[(BuCp)_3Pr(\mu-Br)Li(thf)_3]$, (I), which was isolated from the reaction between equimolar amounts of $(BuCp)_2$ -

[†] Alternative name: μ -bromo-tris $[2,2,2(\eta^5)$ -*tert*-butylcyclopentadienyl]tris(tetrahydrofuran-1 κO)lithiumpraseodymium.

PrCl and LiPh in a solution of LiBr in $THF-Et_2O$. It was supposed that disproportionation occurred during the metathesis reaction.

The crystal structure determination confirms that the title complex, (I), is a heteronuclear bimetal complex, similar to those of analogous formula quoted above (Fig. 1). The central metal Pr^{3+} ion is coordinated by three 'BuCp groups in a η^5 manner and by one Br^- ion to give a coordination number of 10. The Li⁺ ion is coordinated by three O atoms from three thf molecules and one Br^- anion. The coordination polyhedra of the Pr^{3+} and Li⁺ ions both have distorted pseudo-tetrahedral geometries.

Fig. 1. The molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and disorder has not been represented.

The Pr—Br [2.995(1) Å] and Li—Br [2.495(15) Å] distances, and the bond angle Pr—Br—Li [137.3 (3)°] in the title complex are similar to those of Nd— Br [2.978 (2) Å], Li—Br [2.502 (3) Å] and Nd—Br— Li [136.4 (6)°], respectively, found in [('BuCp)₃Nd(μ -Br)Li(thf)₃] (Song *et al.*, 1992). The average Pr—C distance is 2.8 (2) Å. In Table 1, Cp denotes the centroid of a cyclopentadienyl ring.

The methyl groups C7–C9 and C25–C27, atoms C36–C39 of one tetrahydrofuran ligand and atoms C3 and C4 of a cyclopentadienyl ring were found to be disordered.

Experimental

The title complex was isolated from the reaction between equimolar amounts of ('BuCp)₂PrCl and LiPh in a solution of LiBr in THF-Et₂O, followed by crystallization from a toluene solution at 243 K. The compound is very sensitive to air and moisture. Consequently, all manipulations were carried out under argon using Schlenk techniques. A suitable crystal was

sealed in a thin-walled glass capillary for the crystal structure determination.

Crystal data

 $[LiPrBr(C_9H_{13})_3(C_4H_8O)_3]$ Mo $K\alpha$ radiation $M_r = 807.68$ $\lambda = 0.71069 \text{ Å}$ Triclinic Cell parameters from 20 $P\overline{1}$ reflections $\theta = 18.52 - 21.67^{\circ}$ a = 11.905 (4) Åb = 12.337(3) Å $\mu = 2.194 \text{ mm}^{-1}$ T = 293(2) Kc = 14.218(4) Å $\alpha = 88.17(2)^{\circ}$ Prismatic $\beta=80.50\,(3)^\circ$ $0.30\,\times\,0.20\,\times\,0.20$ mm $\gamma=84.52\,(2)^\circ$ Yellow V = 2049.9 (3) Å³ Z = 2 $D_x = 1.308 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Rigaku AFC-7 <i>R</i> diffractom-	3252 reflections with
eter	$I > 2\sigma(I)$
ω –2 θ scans	$R_{\rm int} = 0.027$
Absorption correction:	$\theta_{\rm max} = 21.5^{\circ}$
empirical ΔF (Walker	$h = -12 \rightarrow 12$
& Stuart, 1983)	$k = -12 \rightarrow 0$
$T_{\rm min} = 0.569, T_{\rm max} = 0.645$	$l = -14 \rightarrow 14$
4993 measured reflections	3 standard reflections
4717 independent reflections	every 200 reflections
	intensity decay: 1.73%

Refinement

Refinement on F^2	$(\Delta/\sigma)_{\rm max} = 0.009$
R(F) = 0.039	$\Delta \rho_{\rm max} = 0.603 \ {\rm e} \ {\rm \AA}^{-3}$
$wR(F^2) = 0.086$	$\Delta \rho_{\rm min} = -0.388 \ {\rm e} \ {\rm \AA}^{-3}$
S = 1.067	Extinction correction: none
4706 reflections	Scattering factors from Inter-
496 parameters	national Tables for X-ray
H atoms not refined	Crystallography (Vol. IV)
$w = 1/[\sigma^2(F_o^2) + (0.03P)^2]$	
+ 4.6185 <i>P</i>]	
where $P = (F_0^2 + 2F_c^2)/3$	

Table 1. Selected geometric parameters (Å, °)

Pr1—Br1	2.995 (1)	Br1—Lil	2.495 (15)
Pr1Cp1	2.602 (7)	Lil—O2	1.918 (13)
Pr1—Cp2	2.585 (8)	Li1—O3	1.924 (13)
Pr1Cp3	2.589 (7)	Lil—Ol	1.929 (14)
Br1—Pr1—Cp1	102.4 (3)	Cp1—Pr1—Cp3	117.5 (3)
Br1-Pr1-Cp2	102.1 (4)	Cp2—Pr1—Cp3	116.9 (4)
Br1—Pr1—Cp3	97.8 (4)	Lil—Brl—Prl	137.3 (3)
Cp1—Pr1—Cp2	115.3 (3)		

The structure was solved by the heavy-atom Patterson method and refined by least-squares calculations. H atoms were included but not refined. The quality of the crystals and disorder prevented collection of intensity data to greater than $\theta = 21.5^{\circ}$.

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1992a). Cell refinement: MSC/AFC Diffractometer Control Software. Data reduction: TEXSAN (Molecular Structure Corporation, 1992b). Program(s) used to solve structure: SHELXS86 (Sheldrick, 1990a). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: SHELXTL/PC (Sheldrick, 1990b).

We thank the Natural National Science Foundation of China, Natural Science Foundation of Jiangsu Province and the Laboratory of Organometallic Chemistry of the Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1291). Services for accessing these data are described at the back of the journal.

References

- Gao, H., Shen, Q., Hu, J., Jin, S. & Lin, Y. (1992). J. Organomet. Chem. 427, 141-149.
- Guan, J., Shen, Q., Jin, S. & Lin, Y. (1994). Acta Cryst. C50, 891– 893.
- Jacob, K., Glanz, M., Tittes, K., Thiele, K. H., Pavlik, I. & Lycka, A. Z. (1989). Z. Anorg. Allg. Chem. 577, 145–154.
- Jahn, W., Yunlu, K., Oroschin, W., Amberger, H. D. & Fischer, R. D. (1984). Inorg. Chim. Acta, 95, 84–104.
- Molecular Structure Corporation (1992a). MSC/AFC Diffractometer Control Software. Version 4.3.0. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Molecular Structure Corporation (1992b). TEXSAN. TEXRAY Structure Analysis Package. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
- Ren, J., Guan, J., Jin, S. & Shen, Q. (1994). Polyhedron, 13, 2979–2982.

Sheldrick, G. M. (1990a). Acta Cryst. A46, 467-473.

- Sheldrick, G. M. (1990b). SHELXTLIPC Users Manual. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Song, S., Shen, Q. & Jin, S. (1992). *Polyhedron*, **11**, 2863–2865. Walker, N. & Stuart, D. (1983). *Acta Cryst.* **A39**, 158–166.

Acta Cryst. (1998). C54, 712-714

Chloro(1,4,8,12-tetraazacyclopentadecane- $\kappa^4 N$)zinc(II) Perchlorate

Kaliyamoorthy Panneerselvam,^a Tian-Huey Lu,^a Ta-Yung Chi,^b Chandi Pariya,^b Fen-Ling Liao^b and Chung-Sun Chung^b

^aDepartment of Physics, National Tsing Hua University, Hsinchu, Taiwan 300, and ^bDepartment of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 300. E-mail: thlu@phys.nthu.edu.tw

(Received 16 October 1997; accepted 22 December 1997)

Abstract

The Zn^{ll} ion in $[ZnCl(C_{11}H_{26}N_4)]ClO_4$ has a distorted trigonal-bipyramidal geometry, with the tetradentate macrocyclic ligand and the Cl^- ion constituting the